(x^2+x)/2=180

Simple and best practice solution for (x^2+x)/2=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+x)/2=180 equation:



(x^2+x)/2=180
We move all terms to the left:
(x^2+x)/2-(180)=0
We multiply all the terms by the denominator
(x^2+x)-180*2=0
We add all the numbers together, and all the variables
(x^2+x)-360=0
We get rid of parentheses
x^2+x-360=0
a = 1; b = 1; c = -360;
Δ = b2-4ac
Δ = 12-4·1·(-360)
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1441}}{2*1}=\frac{-1-\sqrt{1441}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1441}}{2*1}=\frac{-1+\sqrt{1441}}{2} $

See similar equations:

| 6(x-2)-2(x+4)=20 | | 1x+5.5+8=5x-13.5-4x | | 10-2x=-32 | | 10c^2+2c=0 | | 2(q–3)=6 | | 3x–5=7x+7 | | -11x=9+3x | | -3=1/3x-5 | | x+28=2x+12 | | 1/15+3x=12 | | x+x-1=360 | | 1/153x=12 | | 8+4x-5=3-x | | 6x-2=1x17.25 | | 3k+6k=24 | | 10z-30=6(z-5)B | | 3.4=x/((210400+187600)/2) | | 11x-2x+64=11x+32 | | -8-x=5 | | 3(z+5)=2z+15B | | -18=11a+7+8 | | 1.4(2-4h)=6h | | 30+7y=120 | | 9x+1=4x+19 | | x=0.7692307692 | | 3r+9/12=2r-1/7 | | -8x-3x=11x | | 3x=x+70 | | 8x-48=6(x-6) | | -83=-7(-2a-1)-8(a+12) | | (5x+8)(x-7)=0 | | 10x-4/x=3 |

Equations solver categories